A building certifier’s friend: the new AS/NZS5532 for height safety anchors

Defender Roof Anchor

What makes a roof safety anchor truly safe? Until now, nobody knew for sure and suppliers of roof safety anchors were able to devise their own test for the performance of this life-saving equipment. All that has changed with the release of AS/NZS 5532:2013 Manufacturing requirements for single-point anchor device used for harness-based work at height.

Sponsored by the Working At Heights Association, AS/NZS5532 is part of the AS/NZS1891 suite of standards, which deal with fall arrest devices.

In fact, the only requirement had been that anchor points were rated to 15kN for one person and 21kN for two-person use. AS/NZS5532 introduced a number of new requirements and set a uniform national benchmark for testing and certification.

Dynamic testing

Traditionally manufacturers applied a static load to the anchor, which placed the least amount of stress on the product. A dynamic test replicates a person suddenly falling and being jerked to a halt.

Accordingly, AS/NZS5532 prescribes:

  • for 15kN, or single-person fall arrest use, drop a 100kg load through 2 metres.
  • for 21kN or two-person use, drop 150kg through 2 metres.

Both tests demand anchors hold the load for three minutes after the sudden drop, without showing any sign of breaking or cracking. The anchors may of course deform, provided there is no sign of permanent damage.

Because an anchor is only as good as the substrate that it’s attached to, the anchors must be tested on the surface and using the same fixings and underlying structure that will be used in real workplaces.

To ensure the results are correct and the testing procedure is applied to the minimum standards AS/NZS17025, these tests are to be carried out in a NATA (National Association of Testing Authorities) laboratory and certified accordingly.

There is a lower rating for limited free fall of 12kN through 600mm only, however the AS/NZS1891 standard dedicated a special appendix alerting the users to the likelihood of misuse, and as such the systems should be designed to sustain falls loads.

Top-fixed anchors

Many buildings have top-fixed (also known as “surface-mounted”) anchors installed that are attached to a surface rather than being fixed to structural members of the building. Although they look the same, the performance of top-fixed anchors depends heavily on the way they are fixed.

A specific test bed has been mandated in this new standard to reflect the way top-fixed anchor are installed.

Associated equipment

The design of the anchor has to accommodate equipment that is to be used with it. For example, a snap hook for connection of the lanyard must be compatible with the eyelet of the anchor.

Compliance and certification

When it comes to such lifesaving equipment, it’s essential to ensure that the product is capable of doing what it’s meant to do.

Building certifiers and workplace controllers are obliged to ensure anchors meet Australian Standards.

Accepting assurances from the installer is fraught with danger, since there is no licensing or recognised training for the installation of this lifesaving equipment. Check references, accreditations and the installer’s familiarity with the Australian Standards and regulations as well as the manufacturer’s instructions.

Independent certification of the product by an association that is a member of JAS-ANZ, the government-appointed accreditation body for Australia and New Zealand, such as SAI Global.

The “five ticks” StandardsMark on a product guarantees the manufacturer has been independently audited to ensure consistent quality, traceability and testing.

Inspection and testing

Ongoing testing, inspection and maintenance requirements are to be included with the handover documentation and user information detailed by AS/NZS5532.

Inspection regimes vary from state to state. Some states reference the AS/NZS1891 requirement for 12 monthly inspections as a minimum, but most states have mandated more frequent six-monthly inspections due to the LFHQ (low frequency, high consequence) nature of anchors.

Design and layout beyond the scope of AS/NZS5532

The critical design and layout elements of effective fall prevention systems is excluded from the scope of AS/NZS5532, which was limited to manufacture.

Incorrect design fails to protect users from falling over the edge and swinging like a pendulum or hitting the ground before the lanyard takes effect. Rescue planning is also critical and this is already well documented and mandated in state-based fall prevention codes of practice.

AS/NZS5532: a new benchmark to guide workplaces

AS/NZS5532 brings new rigour to the inherent safety of roof anchors but its effectiveness depends on the vigilance of building certifiers.

The next time you are asked to assess the compliance of a roof safety anchor, remember to ask whether it is certified to meet AS/NZS5532 and, just as importantly, for the credentials of the testing facility.

*About the author: Carl Sachs is the managing director of fall prevention company, Workplace Access & Safety, and a director of the Working At Heights Association. Mr Sachs was also a member of the committee that drafted AS/NZS5532.